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        Abstract 

Our study evaluates the effect on deforestation and land cover of Costa Rica’s payment-

for-ecosystem-services (PES) program, one of the oldest country-wide PES programs in 

the world. Using property level data from over 2,600 landowners who applied to partici-

pate in the program between 2016 and 2019, we employ an event study design using mod-

ern methods that account for rollout under treatment heterogeneity and find a statistically 

significant decrease in the deforestation rate. The estimated effect represents an 87% de-

crease with respect to the pre-2016 average deforestation rate and is equivalent to 0.09 

hectares of avoided deforestation per property (a small total effect given the low baseline 

deforestation). We find no significant effect on forest cover, but we find suggestive evi-

dence that there is a shift from annual to perennial crops. Given that the lack of addition-

ality is one of the main critiques of PES programs, we explore whether the program could 

increase its additionality by targeting properties with higher ex-ante deforestation risk. For 

this, we train a machine learning model to predict which properties have a higher risk of 

deforestation and find that the program is currently not enrolling disproportionately more 

high-risk properties. Limiting our focus to these properties, we find that the reduction in 

the deforestation rate is 27-73% larger than what we find for the whole sample of partici-

pants. Risk-based targeting could reduce the cost of avoided CO2 emissions by 42%, from 

$71 for the current program to $41 per ton, well under current estimates of the social cost 

of carbon.  
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1 Introduction 

To decrease deforestation, reduce carbon emissions and preserve biodiversity, many countries have 

implemented payment for ecosystem services (PES), buoyed by the promise of these programs as a 

win-win strategy that would allow both the conservation of natural resources and the reduction of 

poverty for rural households and communities. However, the evaluations of these programs have 

found only modest effects, with small reductions in deforestation and increases in wellbeing (Ferraro, 

2017). Across different systematic reviews and studies, the average estimated effects on deforestation 

are small, with an approximate reduction of 0.2% per year in the deforestation rate (Ferraro, 2017; 

Snilsveit et al., 2019; Wunder et al., 2020), modest increases in income ranging from 2% to 14%, and 

with no effects on other dimensions of human welfare (Ferraro, 2017). These modest results highlight 

the low additionality these programs can have, and the challenges associated with using them to reduce 

deforestation. This is especially true in contexts like Costa Rica, where the deforestation rate is rela-

tively low and the total forest area has been increasing since 1990 (Ritchie & Roser, 2021). 

Here, we evaluate the effect of Costa Rica’s PES program on deforestation and land cover. Given that 

the limited additionality of PES programs is one of the main criticisms against them, we directly tackle 

this problem by developing a novel machine learning model of future deforestation rates within prop-

erties to evaluate whether improving the targeting of the program could increase the program’s effects. 

Additionally, to consider the broader effects of the program on carbon and landscapes, we measure 

the program’s effects not only on deforestation, but also on total forest cover and on annual and 

perennial crops. Finally, we also focus on newer cohorts of participants who have not been previously 

studied.  

For this study we have a unique dataset that includes all eligible applicants (enrollees and non-enrol-

lees) for all the cohorts between 2016 and 2020 (2,619 landowners). We combine these data with 

deforestation data from Hansen et al., (2013), with Costa Rica’s official land cover data, and with 

satellite weather (rainfall and temperature) and elevation data to create a panel dataset of properties 

from 2010 to 2019. We use these data in an event study design with staggered entry into treatment, 

where the main identifying assumption is that of parallel trends between treated and untreated units. 

This means that in the absence of the PES program, enrolled properties would have followed a similar 

trend in deforestation and land cover as unenrolled properties. We believe this is a reasonable assump-

tion in this setting because our control group consists only of property owners who applied and were 

eligible to enroll but did not enroll in the program. In fact, we find that few of the differences between 

treated and untreated properties are statistically significant.  

Recent work has shown that in an event study design with staggered entry into treatment, the estima-

tion of treatment effects using OLS can be problematic in settings where there is heterogeneity in 

treatment effects across cohorts. The two main issues are that, first, the estimated effects for some 

units will have a negative weight on the treatment effect, and second, the OLS estimates can suffer 

from cross-lag contamination (Roth et al., 2023). Thus, we use the methods developed by Borusyak 

et al. (2021) and Callaway & Sant’Anna (2021), which are robust to treatment effect heterogeneity 

across cohorts and time.   
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The results of the estimated effect of the program show a statistically significant decrease in the de-

forestation rate for properties who enroll in the PES program. This effect is relatively large:  between 

an 81% and 87% decrease with respect to the baseline deforestation rate. However, the absolute mag-

nitude of the avoided deforestation is small (0.09 hectares per property) because the baseline defor-

estation rate in the country is small. We find no effect of the program on forest cover, but we find 

suggestive evidence of a small reduction in annual crops accompanied by a proportional increase in 

perennial crops, which has been shown to be associated with more biomass, soil organic carbon and 

total nitrogen stock (Chen et al., 2022; Means et al., 2022) 

To evaluate whether the program’s additionality could be increased by enrolling a larger share of prop-

erties with higher ex-ante risk of deforestation, we use machine learning to predict which properties, 

in the year of enrollment, will have high deforestation rates in the future. To do this, we use pre-2016 

data (before any of the properties were enrolled) to train a machine learning model to predict the 

properties for which the future two-year deforestation rate will be above the 90th percentile of all the 

properties in a given year. We call these ‘high-risk’ properties. Then, we use this model to classify all 

the eligible properties for each PES cohort (2016 to 2019) as either high-risk or low-risk. We find that 

the share of high-risk properties in enrolled and unenrolled groups is similar for almost all cohorts. 

This suggests that the program is not successfully targeting and enrolling high-risk properties. When 

we limit the treatment group to only include high-risk properties, the estimated effects are between 

27% and 73% higher (although they are not statistically significant). Thus, we believe that targeting 

high-risk properties to enroll in the program is an opportunity for the program to increase its addi-

tionality. We estimate the cost per ton of avoided CO2 emissions by the program through the avoided 

deforestation to be equal to $71 USD per ton of CO2. If the program exclusively enrolled high-risk 

properties, the increase in the avoided deforestation would decrease the cost of each ton of avoided 

CO2 emissions by 42%, to $41 USD per ton of CO2.  

Being one of the oldest PES programs in the world, Costa Rica’s PES program has been extensively 

studied. However, the conditions of both the country and the program have changed since its incep-

tion, and the current the context of this program is by no means unique. The lessons learned from it 

could be beneficial to countries at a similar income level and with comparable rates of deforestation 

(Table 11 in the Appendix shows that these countries represent 22% of the world's population and 

11.4% of the world's forest area). In this sense, we believe we advance the current understanding of 

the effectiveness of this program in at least three dimensions.  

First, given that the lack of additionality of PES programs is currently one of the main concerns about 

the effectiveness of these programs for forest conservation (Pattanayak et al., 2010), our approach 

using machine learning to predict which are the properties with the highest ex-ante risk of deforesta-

tion is a valuable contribution that has tangible policy implications. It points to areas in which the 

implementation of the program could be modified to increase its additionality and highlights the im-

portance of a more risk-oriented targeting for other PES programs. To the best of our knowledge, 

ours is the first paper to do this. 
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Second, the data we use allows us to construct a control group using data on actual applicants to the 

PES program, whereas in previous studies, the construction of the control group was done by choos-

ing areas not enrolled in the program (Arriagada et al., 2012; Arturo et al., 2007; Robalino et al., 2021). 

The advantage of our data and approach is that the control group we use in our analysis is directly 

comparable to the group of enrolled properties, which in turn requires us to make less strong assump-

tions for our estimated effects to be considered as causal. We believe this is an improvement on the 

existing studies that use quasi-experimental methods. The gold standard set by the only RCT that has 

been done for a PES program cannot be reached in this setting (Jayachandran, de Laat, et al., 2017), 

but nonetheless we believe that our methodological approach is an improvement with respect to other 

studies.   

Relatedly, the unit of observation in our analysis is the property. This is an important distinction from 

previous work, where the units were either grid cells (Arturo et al., 2007) or randomly drawn points 

(Robalino et al., 2021; Robalino & Pfaff, 2013). To the best of our knowledge, only one study used 

properties as the unit of observation, and it focused on only one region and not the whole country 

(Arriagada et al., 2012). Given that the property is the level at which decisions about land use are made, 

estimating effects at this level can better capture the total effects of the program (i.e., the effect net of 

any leakage from areas under contract to no-contract areas within the property).  

Finally, this is the first study of the effects of the PES program in Costa Rica that has focused on the 

latest cohort of participants and on other outcomes besides deforestation (forest and agricultural land 

cover). By studying the most recent cohorts that have not yet been evaluated, we have a more com-

prehensive understanding of the effects of the program since we can also focus on the stock of land 

cover within the properties, which allows us to assess the net changes on forest cover. This is im-

portant given that different land covers provide different environmental services, and we believe this 

is the direction in which the conservation literature has started to move (Ordóñez et al., 2023).  

The remainder of this paper is organized as follows: section 2 describes the program background and 

data we use, and section 3 focuses on our estimation strategy. Section 4 presents the results and dis-

cusses their significance, and section 5 presents our analysis of the program’s additionality based on 

the predicted deforestation. Finally, section 6 presents a cost-benefit analysis of the program and sec-

tion 7 presents our conclusions.    

 

2 Background and Data 

In 1996 Costa Rica approved the current Forest Law (Law No. 7575), creating a payment-for-ecosys-

tem-services (PES) program that compensates landowners for forest conservation. This law banned 

the clearing of mature forests in the country and established the National Forestry Finance Fund 

(FONAFIFO), a semi-autonomous body responsible for managing the PES program. The program 

is financed by a tax on fossil fuels and its current source of funding might be curtailed in the future as 

the country moves towards the decarbonization of its economy (IDB, 2020).  
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Participation in the program is voluntary and each year FONAFIFO opens a call for applications to 

participate in the program; applications are rated based on an existing set of criteria that focus mostly 

on the location of the land (indigenous land, protected areas, environmentally strategic land, level of 

development of the district) and the size of the property. Each application’s score must reach a mini-

mum eligibility threshold and this threshold changes every year depending on the available funding. 

Enrollees sign a 5-year contract with FONAFIFO that establishes the total area to be protected and 

the payment enrollees will receive in return.  

We use the data from all the properties that have applied to the PES program in Costa Rica between 

2016 and 2020 to construct a panel dataset of properties. Using the polygons of each property, we 

overlay the polygons with publicly available spatial data on deforestation, weather, terrain characteris-

tics and accessibility, such that we can know what happened inside each one of the polygons, for each 

year between 2010 and 2019.  

For deforestation, we use Hansen et al.’s (2013) deforestation dataset. This dataset is based on Landsat 

images and have a resolution of 30m, which means that each pixel covers an area of approximately 

0.09 hectares. We not only include data on deforestation but also on actual forest cover. These were 

developed by the Costa Rican National Meteorological Institute (INM per its acronym in Spanish), 

based on Landsat images, which were classified based on a Random Forest Model. The resulting ras-

ters have data on land cover for 2013, 2015, 2017, and 2019, with a 30m resolution and 17 types of 

land covers classified.  

We complement these data with satellite weather data, with the monthly rainfall data from the Climate 

Hazards Group Infrared Precipitation with Stations (CHIRPS) dataset (Funk et al., 2015), and the 

monthly mean temperature from MODIS (Wan et al., 2015). We also include data on the characteris-

tics of the terrain, with data on the elevation and slope from the CGIAR STM DEM data and the 

potential yield for different crops from the FAO global agroecological zones (IIASA & FAO, 2012). 

Finally, we include a measure of proximity to markets, by including data on travel time to major cities 

(Nelson, 2008).  

We limit our sample to landowners who have never participated in the program for any year between 

2010 and 2015 and who have a total area under 300 hectares, which effectively excludes very large 

indigenous territories. We focus only on those landowners who participate in the forest protection 

category of the PES program (“Protección de bosques”), which accounts for 74% of all the applica-

tions submitted to FONAFIFO and 69% of all the contracts signed. This excludes other categories 

of the PES such as agroforestry systems, reforestation, and natural regeneration. Given that the forest 

protection category is the one with the highest demand and that this demand exceeds the available 

funds every year, the applications are scored using prioritization criteria from the Ministry of the En-

vironment and Energy (MINAE)2. These criteria assign a higher score for forests that are in areas 

considered to have a high environmental value: protected areas, indigenous territories, biological cor-

ridors, and forests that provide hydrological services. Additionally, previous program participants, 

 

2 Set by decree in “Decreto Ejecutivo N 39871-MINAE”  
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smallholders and those from poorer districts also receive additional points in their applications. The 

applications are then ranked, from the highest to the lowest score. The funds available each year allow 

the enrollment of a limited number of hectares and so the applications are selected from highest to 

lowest score until they reach the maximum number of hectares allowed for that year. This effectively 

establishes a score cutoff below which none of the applications are accepted. However, some of the 

applicants that have a score above the cutoff do not always end up enrolling in the program even 

though they are given the option to do so. Thus, we limit our sample to only those applications for 

which the score received was above the score cutoff for the year in which they applied (see Figure 1) 

and that as such had the option to enroll in the program. We believe this allows us to have a more 

comparable control group, given that they will have similar characteristics.  

Figure 1. Histogram of the distance of the application score to the cutoff 

 

 

The number of properties that apply to the program changes for every cohort, as does the enrollment 

rate (Table 1). The 2016 cohort is the one with highest number of applications and enrolled properties, 

and 2017 is the year with the lowest number of applications. The total enrollment rate is of 42% for 

the whole set of cohorts in our sample (including 2020), and the average enrollment rate per cohort is 

37%. Since we focus only on those that are eligible to enroll in the program, this means that the control 

group for a given cohort consists of 58% of all the applicants who were eligible to enroll in the pro-

gram but ended up not enrolling.  
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Table 1. Applications that are eligible for enrollment per cohort from 2016 to 2020 

Cohort Non-participants Participants Enrollment rate   Total per cohort 

2016 458 269 37% 727 

2017 219 149 40% 368 

2018 356 165 32% 521 

2019 285 191 40% 476 

2020 527 0 0% 527 

Total sample 1,846 774 42% 2,619 

 

Finally, we also observe that the properties are all evenly distributed throughout the country (see Fig-

ure 2). 

Figure 2. Geographical distribution of properties 
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3 Empirical Strategy 

Our approach to estimate the effect that the enrollment in the PES program had on deforestation is 

based on an event study design, where we estimate the effect of enrollment in the PES program on 

deforestation for the years before and after enrollment in the program. For this approach, we use OLS 

to estimate the following model: 

 

𝐹𝐿𝑖𝑡 = ∑ 𝜅𝑗𝑃𝐸𝑆𝑗
−1
𝑗=−𝑞 + ∑ 𝜆𝑗𝑃𝐸𝑆𝑗

𝑚
𝑗=0 + 𝑋𝑖𝑡𝛽2 + 𝛼𝑡 + 𝛼𝑖 + 𝜀𝑖𝑡  (1) 

 

Where FLit is the deforestation rate inside the polygon of property i in year t (measured as the pro-

portion of the deforested land in a year over the total land area of the property). The model includes 

leads, which capture the effect of enrollment j years before the actual enrollment in the PES program, 

such that 𝜅−2 would capture the effect of enrolling in the program, 2 years before enrollment. It also 

includes lags, which allow us to estimate the effect on deforestation j years after enrollment, such that 

𝜆3 for example, would be the effect from enrolling in the program, 3 years after enrollment. We in-

clude a set of control variables Xit that includes rainfall, temperature and their interactions with crop 

suitability for different crops, elevation, slope and travel time to cities. We also include year and prop-

erty fixed effects.  

The main identifying assumption for the estimation of a causal effect from participation in the PES 

program is that of the parallel trends in deforestation between treated and untreated properties. In 

this case, this implies that the trends in deforestation that treated properties would have followed had 

they not been treated, would have been similar to the trend followed by the untreated properties. 

While this is an untestable assumption, we provide evidence that shows that the trends followed by 

treated properties prior to enrollment, were similar to those followed by the untreated properties dur-

ing that same period. In our setting, this would imply that the 𝜅−𝑗 coefficients are statistically equal to 

zero and that they are jointly not significant.  

Additionally, given that in this setting we have properties that enroll in the program at different points 

in time, we need to assume that there is no heterogeneity in the treatment effects for the different 

cohorts, to have unbiased estimates of 𝜆𝑗 . With treatment heterogeneity across program cohorts, there 

are two issues that arise (Roth et al., 2023). First, the coefficient 𝜆𝑗 may put a negative weight on the 

treatment effect j periods after treatment, so that for example, the treatment effect for some properties 

three years after entering the program may enter 𝜆3 negatively. Second, the coefficient 𝜆𝑗 may put 

non-zero weight for treatment effects at lags j’ ≠ j, creating cross-lag contamination. This could lead 

to a situation where 𝜆3 is affected by the treatment effect for some properties that have been in the 

program for four years. Importantly, (Sun & Abraham, 2021) show that if there are heterogeneous 

treatment effects, the 𝜅−𝑗 coefficients from (1) can be equal to zero even in there are pre-trends or 
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can also be different from zero even if there are no pre-trends. Thus, if there is treatment heteroge-

neity, these coefficients are not informative about the validity of the parallel trends assumption.  

We believe that in our setting, the presence of heterogeneous dynamic treatment effects is highly likely, 

given that new properties with different characteristics apply to the program every year (see Table 13 

in the Appendix), which together with changes in the external conditions that might affect land use 

decisions, could change the effects that the program has for different groups at different points in 

time. Thus, for example, the assumption that the average treatment effect of the program 2 years after 

enrollment for properties who enrolled in year t is the same as what it is for properties who enrolled 

in t+1, might not be a reasonable assumption.  

Thus, we use two recently developed methods that are robust to the presence of heterogeneous treat-

ment effects. First, we use the method developed by Callaway & Sant’Anna (2021)3, which is based 

on a doubly-robust approach from Sant’Anna & Zhao (2020), under which the estimated effects are 

consistent if either the propensity score model or the outcome model are correctly specified. The 

group-average treatment effect is estimated from two elements: (1) the estimated probability of a 

property being part of a treated cohort based on their pre-treatment characteristics; (2) the expected 

difference between the outcome in the period before treatment and the expected outcome for the 

never treated group.  

Second, we also use Borusyak et al.’s (2021) method4, which is an imputation estimator that uses the 

not-yet-treated properties and time periods in a regression with property and year fixed effects to 

generate the predicted potential outcome for the treated properties after treatment. These can be used 

to estimate the treatment effect for each property and year, and they can be aggregated to estimate the 

average treatment effect at different lags. The main difference between the CS and BJS methods is 

that the base period in BJS is the average of all the pre-treatment, whereas the base period for CS is 

the last pre-treatment period.  

 

4 Results 

We compare the characteristics of both participants and non-participants in our sample, to assess if 

on average, these two groups are systematically different. We find that both groups have similar char-

acteristics, but there are statistically significant differences in the means of both groups for certain 

variables (Table 2).  

 

 

3 Henceforth, we will refer to this method as CS.  

4 We will refer to this method as BJS.  
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Table 2. Summary statistics of main characteristics by group 

  All sample Control Treatment Diff. t-statistic 

Application score 116.87 113.16 125.72 -12.56 (-10.90)*** 

Deforestation in ha (pre-2016) 0.10 0.12 0.07 0.05 (4.65)*** 

Deforestation Rate (pre-2016) 0.152% 0.159% 0.134% 0.026% (1.49)    

Forest Area 2015 (ha) 56.14 60.20 46.48 13.72 (6.02)*** 

Forest Area 2015 (% of total area) 0.82 0.81 0.84 -0.03 (-3.20)**  

Total crops area 2015 (ha) 1.83 2.03 1.34 0.70 (1.66)    

Annual crops 2015 (ha) 0.52 0.58 0.39 0.19 (1.27)    

Perennial crops 2015 (ha) 1.31 1.46 0.95 0.51 (1.43)    

Share annual crops 2015 (% total) 0.81% 0.83% 0.76% 0.07% (0.42)    

Share perennial crops 2015 (% total) 1.93% 2.23% 1.21% 1.02% (3.06)**  

Area (ha) 68.82 74.36 55.61 18.75 (7.24)*** 

Proposed area under PES (ha) 38.90 41.90 31.72 10.23 (6.15)*** 

Elevation (m.a.s.l) 608.69 617.35 588.04 29.31 (1.13)    

Slope (degrees) 12.33 12.27 12.47 -0.20 (-0.67)    

Potential yield – Maize (kg/ha) 701.89 699.14 708.45 -9.31 (-0.36)    

Potential yield – Sugarcane (kg/ha) 1246.05 1258.31 1216.82 41.50 (0.90)    

Potential yield – Wheat (kg/ha) 15.02 15.50 13.85 1.65 (0.69)    

Potential yield – Citrus (kg/ha) 261.76 272.44 236.31 36.13 (2.31)*   

Potential yield – Coffee (kg/ha) 321.92 324.55 315.65 8.91 (0.71)    

Travel time (min) 340.77 338.57 346.03 -7.46 (-0.95)    

Mean annual rainfall (mm) 2969.79 2980.43 2944.44 35.99 (1.03)    

Mean temperature (Celsius) 26.23 26.23 26.24 -0.01 (-0.10)    

Obs.  2,619 1,845 774     

 

As expected, we find that there are significant differences in the application score, with participants 

having a higher score than non-participants. In terms of the outcome variables, we find that non-

participants have higher total deforestation (significant difference), a higher deforestation rate (non- 

significant difference), more forest area in hectares but less forest area as a share of the property’s land 

area (significant difference), which is explained by the fact that non-participants have larger properties 

(significant difference). In terms of environmental characteristics, the only significant difference be-

tween the two groups is that non-participants have a slightly higher potential yield for citrus. Im-

portantly, none of the other characteristics that could influence land use decisions, such as elevation, 

slope, potential yields, and weather are different between the two groups.  
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4.1 Deforestation 

Our main outcome variable is the deforestation rate inside each of the properties that applied to the 

program. Given that enrollment in the program is staggered and that we believe that effects of the 

program are likely to be heterogeneous in time, our two estimates of the effects of the program on 

deforestation come from CS and BJS (we also include the estimated results from OLS for compari-

son). The main assumption for the unbiasedness of the estimated effects in this case is that of the 

parallel trends, which means that the trend in the deforestation rate within each property after enrol-

ling in the PES program, would have been the same as the trend followed by the control group, if the 

enrolled properties had not participated in the program. Our belief that this is a plausible assumption 

in this case, comes from the fact that both groups are statistically similar in their observable environ-

mental characteristics (Table 2) and that both groups applied to the program and were eligible to 

enroll. This makes us confident that the scope of the potential selection bias is limited, especially for 

the selection into participating in the program. However, it is possible that there is some selection into 

enrollment, since all the properties in our sample were eligible to enroll, but not all ended enrolling 

into the program. Thus, our main assumption is that the decision to not enroll in the program is on 

average uncorrelated with any time varying external factor that affects the deforestation rate and land 

use within the properties. From anecdotal evidence from the program administrators, both partici-

pants and not participants are equally interested in the program and nonenrolment is ultimately the 

result of unforeseen circumstances (for example, the applicant takes longer than anticipated gathering 

all the necessary documents or cannot find one of these documents). In fact, we observe that the 

average date at which the applications are submitted are similar for both participants and nonpartici-

pants (Table 12 in the Appendix).  

Furthermore, given our event study specification, we can test whether the trends in deforestation 

between participants and nonparticipants before enrollment are the same, which is in fact what we 

find (Figure 3). This does not mean that the parallel trends assumption is true in our case, since this 

assumption is ultimately untestable, but it provides evidence in favor of the validity of the assumption 

in this setting.  

We find that after enrollment in the program there is a decrease in the deforestation rate. All the 

effects estimated using BJ and OLS are statistically significant, while those based on CS are non-

significant for all the post-treatment period, although they are significant at the 10% significance level. 

The magnitude of the estimated effects with both methods are similar for the first two post-treatment 

years, after which the estimated effects from BJS are larger. The largest effect happens three years 

after enrollment, with an estimated reduction in the deforestation rate of -0.0016. 
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Figure 3. Event study results for the deforestation rate  

 

 

The average treatment effect on the treated provides a more informative measure of the magnitude 

of the program’s effects on deforestation. The estimated effects from both methods are very similar 

(also similar to the OLS estimate), and they are all statistically significant (Table 3). Given that the 

baseline level of deforestation in our sample is low (which is also true for the whole country), the 

relative magnitude of the effect is large. When compared to the pre-2016 average level of within farm 

deforestation rate of 0.00152 (see Table 2), the estimated effects would imply an 87% reduction in the 

deforestation rate based on BJS and an 81% based on CS. With the average area of 69 hectares, this 

represents between 0.085 and 0.09 hectares of avoided deforestation per property per year.  

Table 3. Deforestation Rate - Average Treatment Effects on the Treated 

  Estimated coefficient Std. error p-value 

OLS -0.00122 0.00037 0.001 

BJS - Post-treatment ATT -0.00132 0.00034 0.000 

CS - Post-treatment ATT -0.00123 0.00045 0.024 

 

To compare our results with the results from previous studies, we calculate the standardized effect 

based on the results from the BJS estimation, by dividing the estimated effect by the standard deviation 

of the deforestation rate for the comparison group. Our standardized effect is -0.12, which is within 

the range of all the values reported by Ferraro (2017) for all the studies on the effect of PES on 
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deforestation in Costa Rica (ranging from -0.07 from Robalino & Pfaff [2013] to -0.18 from  Robalino 

et al. [2008]). Importantly, Robalino & Pfaff (2013) focus on the first cohorts of the program (1997 

to 2000), while Robalino et al. (2008) focus on the cohorts between 2000 to 2005. Robalino et al. 

(2008) find that there was an increase in the effect of the program when compared to the results for 

earlier cohorts, since for the earlier cohorts, properties were enrolled on a “first come first serve” basis 

and enrolled properties tended to be the ones where deforestation would have been low in absence of 

the program.  Based on our results, it seems like the effect of the program has not increased after 2005 

(although there are no studies for the cohorts between 2005 and 2016) and the changes to the priori-

tization criteria in 2016 do not seem to have led to a larger effect from the program on deforestation.   

 

4.2 Forest Cover  

To complement our analysis of the effects of the PES program on deforestation (the flow variable), 

we examine whether the program has any detectable effects on forest cover (the stock). Given that 

the magnitude of the effect of the program on deforestation is very small on absolute terms, we would 

not expect this to be picked up as an effect of the program. This is exactly what we find: the estimated 

effect of enrollment in the PES program on forest cover is zero for all the years after enrollment in 

the program (Figure 4). Furthermore, the average treatment effect on the treated, using both CS and 

BJS is also effectively equal to zero (Table 4). This does not mean that the program has no effect on 

forest cover, only that with our current data and given the magnitude of the effect of the program on 

deforestation, we cannot detect any effect on forest cover.  

Figure 4. Event study results for forest cover  
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Table 4. Forest Cover - Average Treatment Effects on the Treated 

  Estimated coefficient Std. error p-value 

OLS -0.00002 0.00085 0.981 

BJS - Post-treatment ATT 0.00037 0.00091 0.689 

CS - Post-treatment ATT -0.00004 0.00072 0.959 

 

4.3 Agricultural land uses 

We also explore the effects from enrolling in the program on land with annual and perennial crops 

within the property. A common concern related to PES programs is that the new source of income 

(i.e., the payments) could relax a credit constraint and could be used to expand the agricultural frontier, 

by converting forestland to cropland. Conversely, the increased income could also be used to intensify 

agricultural production in the existing cropland, through investments in the current crops or through 

the shift to more economically valuable crops (such as perennial crops).  

Related to the conversion of forestland to cropland, we have no evidence that this is the case in Costa 

Rica (Figure 5 and Table 5). However, we do find suggestive evidence that there is a shift from annual 

to perennial crops, given that the share of annual crops over the total land in the property decreases 

while there is a proportional increase in land with perennial crops. This is relatively small increase in 

the share of the total land dedicated to perennial crops (7% increase with respect to the mean), and 

evaluated at the mean property size, represents a shift of 0.1 hectares from annual to perennial crops.    

Figure 5. Event study results for forest cover  

Annual crops 

 

Perennial crops 
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Table 5. Agricultural land uses - Average Treatment Effects on the Treated 

Panel A - Annual crops       

  Estimated coefficient Std. error p-value 

OLS -0.00083 0.00177 0.640 

BJS - Post-treatment ATT -0.00147 0.00174 0.396 

CS - Post-treatment ATT -0.00212 0.00180 0.239 

        

Panel B - Perennial crops     

  Estimated coefficient Std. error p-value 

OLS 0.00033 0.00139 0.809 

BJS - Post-treatment ATT 0.00134 0.00136 0.326 

CS - Post-treatment ATT 0.00267 0.00163 0.103 

 

5 Deforestation risk and heterogeneous effects 

The effectiveness of the program depends on the additionality that it has: how many hectares of forest 

would have been lost in the absence of the program. If the program targets areas with a higher risk of 

deforestation, where presumably more hectares of forest would be lost in absence of the program, 

then the program will be much more effective (higher additionality).  

As a thought exercise, imagine the program administrators had complete information and perfect 

foresight, such that based on the location of a property and its characteristics, they could perfectly 

predict which properties will have higher deforestation in the future in the absence of the program. If 

this was the case, then with this information, they would target those properties where deforestation 

will be relatively higher (relative to the pool of applicants), given that for every dollar spent, they would 

get more hectares of avoided deforestation. From this simple thought experiment, we can see that 

increasing the additionality of the program is to a large extent a prediction problem. We want to be 

able to know which properties are the ones where future deforestation will be highest, and we then 

want to select those properties to enroll in the program.  

Given the predictive nature of this problem, we can use tools that are specifically designed to generate 

accurate predictions (such as machine learning models), to examine whether the program currently 

targets properties with a higher risk of deforestation and whether there are differential effects when 

focusing on the properties that the model would classify to be as high-risk. Thus, first we train a 

machine learning model to predict which properties are the most likely to have high levels of defor-

estation in the future, trying to replicate as closely as possible the thought experiment we proposed, 

and then estimate the share of participants and non-participants that are classified as high-risk 
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properties. Secondly, we estimate the effects of the program focusing only on the treated properties 

that are classified as high-risk by the model, so that we can compare the estimated effects for these 

properties, to the effects we estimate for the whole sample.   

To train the model, we take all the properties in our sample, and for each year, calculate the future 

two-year deforestation rate. For example, for each property in 2012, we sum the total deforestation in 

2013 and 2014, and then divide by the area of the property to get the future two-year deforestation 

rate. We do this for every property and every year up to 2015. We then create a dummy variable that 

takes the value of 1 if the property has a two-year deforestation rate above the 90th percentile of all 

the properties in a given year (we call this variable “high deforestation risk”). We choose this cutoff 

since the two-year deforestation rate is zero for most properties, which means that for most years, the 

75th percentile of the two-year deforestation rate is zero.  

We train a gradient boosting model to classify properties as being either high-risk (1) or low-risk (0) 

of deforestation, using data from properties in 2012. We chose this model given that it frequently 

outperforms other models such as Random Forest and XGBoost (Bentéjac et al., 2021). We use 10-

fold cross-validation to tune the three most important hyperparameters in the model: the learning rate, 

the optimal number of trees and the maximum tree depth (see section 8.1 in the Appendix for a brief 

description of the model and the gradient boosting algorithm). In terms of the predictors, we include 

variables that are associated with the potential suitability of the forest land for agriculture, given that 

the existing evidence shows that in general agriculture is the main driver of deforestation (Busch & 

Ferretti-Gallon, 2017; Pendrill et al., 2022).  This is also true in Costa Rica, where between 2001 and 

2022, shifting agriculture was the main driver for 93% of the hectares of forest loss, according to data 

from Global Forest Watch5. As such, we include data at the property level on elevation, slope, potential 

yields for 14 crops, rainfall, and temperature (both in the present and lagged up to two periods), travel 

time to the closest city with a population of 50 thousand residents, and then also Canton level popu-

lation variables (total population, male and female).  

With the hyperparameters from the cross-validation exercise, we create a model that predicts which 

properties could be classified as being of high deforestation risk. To assess the model’s out of sample 

performance, we compare the predicted classification with the real classification for 2013 and 2014. 

We then calculate the recall rate, which is the ratio between the properties that are correctly classified 

as high deforestation risk and the total number of properties that are actually high deforestation (clas-

sified as 1 when they are actually 1), and the precision rate (also called true positive rate) as the ratio 

between the properties that are correctly classified as high risk and the total number properties classi-

fied as high risk (both the true and false positives). The recall rate then allows us to know what per-

centage of the high-risk properties the model correctly identified, whereas the precision rate allows us 

to know what percentage of the properties classified as high-risk, are actually high-risk. We find that 

for 2013, 46% of the properties are incorrectly classified as high deforestation risk and the value goes 

down to 36% in 2014 (Table 6). This means that if we based the targeting of the program solely on 

 

5 Global Forest Watch, 2014, World Resources Institute. Accessed on July 4, 2023.  
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the predictions generated by our model, we would get 45.6% of the high-risk properties in 2013 and 

36% in 2014. Additionally, of the properties that the model classifies as high deforestation risk in both 

2013 and 2014, 26% of these would actually be high-risk.  

Table 6. Recall and precision rates of the classification model 

  Recall Precision 

2013 45.6% 26.0% 

2014 36.0% 26.0% 

 

When evaluating the model’s performance, it is important to keep two things in mind. The first is that 

our true outcome variable is by definition a rare event, since for a given year, only 10% of the prop-

erties are considered to be high risk. The rarer the event to be predicted, the harder it will be for the 

model to have higher recall and precision rates. Second, the objective is not to perfectly predict all the 

properties that we classified as being high-risk, based on an arbitrary cutoff, but to predict those prop-

erties where for a given year, future deforestation will be higher than what it is for the average property 

in our sample. In that regard, we believe that our model performs very well. To evaluate this, we 

calculate the average future two-year deforestation rate for all the properties that our model classifies 

as high-risk, and we compare it to that of the properties classified as low-risk by our model (Table 7). 

We see that for both years, the properties that are classified as high-risk have significantly higher future 

two-year deforestation rates (4x times the rate of the low-risk properties in 2013 and 3.3x times for 

2014). These differences are statistically significant for both years.  

Table 7. Future two-year deforestation rates based on the model’s classification  

  Low-risk High-risk Difference t-statistic 

2013 0.135% 0.547% -0.412% 7.64*** 

2014 0.162% 0.530% -0.368% 4.17*** 

 

Given the model’s performance at identifying high-risk properties, we can use the model’s prediction 

to examine whether the program is currently being successful at enrolling high-risk properties. To do 

this, we use the model to classify all the properties for every cohort as being high-risk or low-risk, and 

then calculate the share of properties for each cohort that are classified as high-risk. If the program is 

being successful at enrolling high-risk properties, then the share of high-risk properties would be 

higher in the participants’ than in the non-participants group. We find that this is not the case (Table 

8). For most of the cohorts, the share of properties that are classified as high-risk is the same for both 

groups, with the only exception being the cohort of 2019, when the share of high-risk properties in 
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the participant’s group is double that of the non-participants. Additionally, we also find that the aver-

age of the application scores of low and high-risk properties are not statistically different, as would be 

expected if the prioritization criteria were correlated with a measure of ex-ante deforestation risk, in 

which case the application scores of the high-risk properties would be higher (see Table 14 in the 

Appendix). Thus, we believe that currently the program is not successfully enrolling the properties 

that have the highest risk of deforestation.  

Table 8. Share of participants by cohort that are classified as high-risk 

Cohort Non-participants Participants 

2016 19% 20% 

2017 13% 9% 

2018 10% 11% 

2019 7% 14% 

 

Finally, we can also explore whether the program’s effects are different when only focusing on those 

properties that we classify as high-risk. If the effects are higher, then it would provide evidence of how 

targeting and successfully enrolling properties that are considered to be high-risk, can increase the 

program’s additionality. We find that when limiting the treatment group only to the properties that 

are classified as high-risk by our model, and using the same control group as in our original analysis, 

the estimated effects increase when compared to the whole treatment group (Table 9), even though 

the results are no longer statistically significant (possibly because the treatment group is much smaller). 

Compared to our original results (Table 3), we see that when focusing only on those that we predict 

would have had higher deforestation, the estimated effects from BJS are 27% larger and the ones from 

CS are 73% larger. Given that average area of these sample of properties is larger (76.6 ha), this rep-

resents between 0.12 ha and 0.16 ha of avoided deforestation, an increase of between 33% and 78% 

with respect to the avoided deforestation for the whole sample.  

Table 9. Estimated effects on deforestation with high-risk properties as treatment group 

  Estimated coefficient Std. error p-value 

BJS - Post-treatment ATT -0.001608 0.00124 0.195 

CS - Post-treatment ATT -0.00213 0.00149 0.154 
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6 Cost-benefit analysis from avoided CO2 emissions 

The main benefit of the program is that it protects existing forestlands that would have otherwise 

been lost. These forestlands provide several environmental services, but the main one is that by keep-

ing these trees standing, the carbon that is contained in their biomass, both below and above ground, 

is prevented from going into the atmosphere when these trees are cut down. We can then calculate 

the approximate amount of avoided carbon emissions and use this to evaluate whether the benefits 

from these avoided emissions exceed the total payments required to achieve this result. To do this, we 

break down the analysis into two different steps.  

First, we define the amount of avoided carbon emissions associated with the avoided deforestation. 

To define the carbon content per hectare of forest in Costa Rica, we use the values from Saatchi et 

al., (2011), which provide the estimated carbon content per hectare of forest for several countries and 

have estimated the mean value for Costa Rica to be 108 tons of carbon per hectare of forest6. Given 

that a molecule of CO2 is 3.67 times heavier than a carbon atom, this is equivalent to 396 tons of CO2 

per hectare of forest (Table 15 in the Appendix).   

Our estimates show that the reduction in deforestation caused by the program is equivalent to 0.09 

hectares of forest per enrolled property, which implies that on average every enrolled property repre-

sents 36 tons of avoided CO2 emissions. However, these emissions do not occur instantaneously, and 

so we assume that there is an average lag of 10 years between the time when the trees are felled and 

the carbon in them is released into atmosphere, which comes from assuming that to 45% of the bio-

mass is burned in the first year, 45% decays over 15 years (Hérault et al., 2010) and the remaining 10% 

is stored in wood for 30 years (this is a similar assumption as the one made by Jayachandran, De Laat, 

et al., 2017). Given that the value of avoided present emissions is higher than that of future emissions, 

we use a 2% discount rate to bring that future stream of emissions into the present (Nesje et al., 2023; 

Sarofim & Giordano, 2018).  

Second, we calculate the costs associated with preventing these emissions. We have that on average 

each enrolled property has an area under contract of 39 hectares (the size of the area that is legally 

being protected under the contract signed between the beneficiary and FONAFIFO). With an average 

payment of $54 USD/ha, the payments made to each beneficiary amount to $2,106 USD/year.  

Thus, the estimated cost from avoided CO2 emissions is $71 USD/MT CO2 (Table 10, Panel A). This 

cost can then be compared to the benefits from the avoided CO2 emissions, which have been defined 

in three different ways (Table 10, Panel B). One is based on the social cost of carbon (SCC), which is 

an estimate of the economic damages done by the emission of an additional unit of carbon. These are 

estimated using Integrated Assessment Models (IAMs), which use climatic models to estimate the 

climate’s response to changes in emissions, which are in turn used as inputs in an economic damages 

 

6 We use the data provided in Table 3 from the “Supplementary Material” from Saatchi et al., (2011), which 

can be found in https://www.pnas.org/doi/full/10.1073/pnas.1019576108#supplementary-materials.  

https://www.pnas.org/doi/full/10.1073/pnas.1019576108#supplementary-materials
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function, to estimate the damages from emissions. Given all the modelling choices, the estimated 

SCCs can vary greatly, although there has been a documented upward trend in the published estimates 

(Rennert et al., 2022; Tol, 2023).  

Another way in which the benefits from avoided CO2 emissions can be valued is based on a target-

consistent pricing approach, in which an implicit carbon price is estimated at any point in time, based 

on an emissions reduction target (such as the one set by the Paris Agreement). These are based on 

estimated marginal abatement cost curves, which are used to estimate the implicit price of CO2 at any 

point in time that will lead to a reduction in CO2 emissions that is consistent with a given target (High-

Level Commission on Carbon Prices, 2017; Stern et al., 2022). The third one is based on survey-

elicited experts’ opinions on the probabilities of extreme outcomes associated with climate change and 

the reductions in emissions needed to avert them (Pindyck, 2019). The SCC is then estimated as the 

ratio of the losses to the reduction in CO2 emissions needed to avert them.  

We calculate the benefit-cost ratios based on what we believe are the best estimates of the benefits 

from the avoided CO2 emissions (Table 10, Panel C). We find that in all cases the benefit-cost ratio is 

greater than one (the benefit from the avoided emissions is higher than the costs of achieving them). 

To the best of our knowledge, this is the first time that a cost-benefit analysis has been performed for 

this program. Jayachandran, De Laat, et al., (2017) performed a similar analysis for a PES program in 

Uganda and found that the estimated cost per ton of avoided CO2 was much lower ($0.46 per averted 

MT of CO2), which then implies that the benefit-cost ratios are much higher for their program.  

Table 10. Cost-benefit analysis per ton of avoided CO2 

Panel A. Cost of avoided CO2     

  Value Measurement Units 

Avoided deforestation per property 0.09 ha 

Present equivalent of avoided CO2 emissions per property 29.5 MT 

Total average payment per contract/year (USD) $2,106 USD$ 

Amount paid per ton of CO2 avoided $71 USD/MT CO2 

      

Panel B. Benefits of avoided CO2     

Rennert et al. (2023) - 2% discount rate $185  USD (2020)/MT CO2 

Pindyck, 2019 $90  USD (2020)/MT CO2 

High-Level Commission on Carbon Prices, 2017 $80  USD (2020)/MT CO2 

      

Panel C. Benefit-cost ratios     

Rennert et al. (2023) - 2% discount rate 2.59  

Pindyck, 2019 1.26  

High-Level Commission on Carbon Prices, 2017 1.12   

 



21 

 

7 Conclusions 

Costa Rica’s PES program is one of the oldest country wide PES programs in the world. The evalua-

tion of its effectiveness in the early years of the program showed that the program had little to no 

effect on deforestation (Arturo et al., 2007; Robalino & Pfaff, 2013). However, in regions where the 

threat of deforestation was higher and there was active targeting of participants, evidence suggests that 

the program increased forest cover (Arriagada et al., 2012). There is also evidence showing that the 

effect of the program on deforestation increased for the later cohorts (Robalino et al., 2021).  

Ours is the first study of the latest cohort of participants of the PES program (2016-2020) and is also 

the first one to use actual applicants to the program as a control group. Using an event study design, 

we find that there is a statistically significant decrease in the deforestation rate after enrollment in the 

program and the relative magnitude of the effect is large compared to the baseline level of deforesta-

tion, with the estimated effect representing an 87% decrease in the deforestation rate. However, in 

terms of the total area of avoided deforestation, this amounts to 0.09 hectares per property per year. 

Given this small effect, we do not find that there is a detectable effect of the program on forest cover, 

but we do find suggestive evidence that there is a shift from annual to perennial crops.  

We find that there is a potential to leverage the predictive power from machine learning models to 

increase the additionality of the program. We train a model to predict which are the properties with 

relatively higher deforestation risk and find that currently the program is not disproportionally enrol-

ling these high-risk properties, which is what one would expect to see if the program was successfully 

targeting properties with an ex-ante higher risk of deforestation. We find that if the program focused 

on the properties that are predicted to be high-risk, the additionality of the program could be higher, 

given that the effect of the program is between 27% and 73% higher when only focusing on these 

predicted high-risk properties, which would represent between 0.12 ha and 0.16 ha of avoided defor-

estation.  

Finally, we evaluated whether the benefits from the avoided CO2 emissions exceed the costs of the 

program. We find that that this is indeed the case and that the benefit-cost ratio could be higher if the 

program targeted more high-risk properties (increasing its additionality). Given that the avoided de-

forestation could increase between 0.12 ha up and 0.16 ha when focusing only on high-risk properties, 

the expected cost per ton of avoided CO2 could then decrease to $54-$41 (Table 16 in the Appendix), 

which represents a reduction of up to 42% in the cost per ton of avoided CO2. This is highly relevant 

in this case given the possibility that the source of funding for the program will decrease in the future 

and that the cost per avoided metric ton of CO2 is much higher than the only other available evaluation 

of a PES program (in Uganda). 

Given these results, we believe that future work should aim to understand how the program can in-

crease the enrollment of more high-risk properties, since this will be critical to increasing the addition-

ality and cost-effectiveness of the program in the future.  Additionally, the program presents an op-

portunity to evaluate the other environmental benefits provided by forests in Costa Rica, such as its 

effects on air and water quality.  
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8 Appendix 

Table 11. Countries with similar per capita GDP and deforestation rates* 

Country 

GDP per 
capita, PPP 
(2021 - cur-
rent USD $) 

Total Popu-
lation - 2021 

Forest area 
(2021 - ha) 

Forest Loss 
(2021 - ha) 

Forest Loss 
Rate (2021 - 

based on for-
est area) 

Albania 15,533 2,811,666 788,900 1,686 0.21% 

Antigua and Barbuda 21,959 93,219 8,053 39 0.49% 

Barbados 15,178 281,200 6,300 17 0.27% 

China 19,484 1,412,360,000 221,857,750 536,656 0.24% 

Colombia 17,105 51,516,562 58,942,627 265,168 0.45% 

Costa Rica 22,643 5,153,957 3,051,240 7,848 0.26% 

Ecuador 11,773 17,797,737 12,433,560 30,273 0.24% 

El Salvador 10,143 6,314,167 579,380 1,489 0.26% 

Equatorial Guinea 16,151 1,634,466 2,440,060 8,906 0.36% 

Jamaica 10,601 2,827,695 600,773 1,485 0.25% 

Mexico 19,578 126,705,138 65,564,317 189,079 0.29% 

Moldova 15,010 2,615,199 386,500 1,131 0.29% 

North Macedonia 18,344 2,065,092 1,001,490 2,304 0.23% 

Peru 13,831 33,715,471 72,157,533 225,204 0.31% 

Serbia 21,647 6,834,326 2,722,940 4,072 0.15% 

South Africa 14,689 59,392,255 17,013,690 52,067 0.31% 

St. Lucia 14,396 179,651 20,770 35 0.17% 

Trinidad and Tobago 25,421 1,525,663 227,770 316 0.14% 

Tunisia 11,471 12,262,946 704,260 2,079 0.30% 

Turks and Caicos Islands 21,803 45,114 10,520 43 0.41% 

Total   1,746,131,524 460,518,433 1,329,898 0.29% 

Share of World total   22% 11% 5.3%   

* Lighter shading denotes countries in Latin America.  

 Table 12. Time from beginning of year to application date 

  Number of days between beginning of the year and date of application 

Cohort Nonparticipants Participants Difference t-statistic 

2016 45.4 40.5 5.0 3.15*** 

2017 37.7 39.6 -1.9 0.91 

2018 49.6 53.4 -3.8 1.68 

2019 57.4 54.5 2.9 1.45 

2020 54.1 - - - 

Total 49.6 46.5 3.0 3.02*** 
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Table 13. Characteristics by cohort 

 Cohorts 

  2016 2017 2018 2019 2020 

Application score 128.15 126.17 103.83 106.46 117.05 

Deforestation in ha (pre-2016) 0.11 0.09 0.07 0.12 0.11 

Deforestation Rate (pre-2016) 0.163% 0.136% 0.096% 0.200% 0.160% 

Forest Area 2015 (ha) 60.11 65.60 54.14 49.70 51.77 

Forest Area 2015 (% of total area) 0.84 0.85 0.82 0.79 0.78 

Total crops area 2015 (ha) 1.65 1.40 1.99 1.44 2.56 

Annual crops 2015 (ha) 0.53 0.46 0.55 0.39 0.65 

Perennial crops 2015 (ha) 1.12 0.94 1.44 1.05 1.92 

Share annual crops 2015 (% total) 0.79% 0.69% 0.55% 0.89% 1.10% 

Share perennial crops 2015 (% total) 1.57% 1.15% 2.15% 2.00% 2.66% 

Area (ha) 70.72 77.34 66.36 63.49 67.40 

Proposed area under PES (ha) 39.38 45.33 39.50 36.13 35.75 

Elevation (m.a.s.l) 668.87 617.10 616.05 626.85 496.12 

Slope (degrees) 13.06 12.46 12.76 11.88 11.21 

Potential yield – Maize (kg/ha) 639.53 711.04 635.30 717.09 833.62 

Potential yield – Sugarcane (kg/ha) 1,105.72 1,244.00 1,175.98 1,313.92 1,449.04 

Potential yield – Wheat (kg/ha) 16.81 14.18 14.56 12.97 15.43 

Potential yield – Citrus (kg/ha) 254.13 242.15 297.31 302.26 214.25 

Potential yield – Coffee (kg/ha) 296.71 313.60 297.61 335.22 374.54 

Travel time (min) 347.76 346.74 330.12 331.71 345.69 

Mean annual rainfall (mm) 2,938.64 3,041.14 2,995.22 2,931.78 2,966.51 

Mean temperature (Celsius) 25.96 26.06 26.19 26.20 26.79 

 

Table 14. Application score by classification of deforestation risk 

Cohort Low-risk High-risk Difference t-statistic 

2016 129.0 123.8 5.2 3.51*** 

2017 126.2 124.3 1.8 0.86 

2018 108.6 114.9 -6.3 -0.98 

2019 106.1 107.9 -1.8 -0.29 

All cohorts 117.9 119.6 -1.7 -0.81 
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8.1 Tuning the Hyperparameters for the Gradient Boosting Model  

The model is based on weak learners (decision trees in this case), that are recursively trained to reduce 

the prediction error. The Gradient Boosting algorithm proceeds as follows:  

1. A weak learner creates a prediction that defines the starting point for the optimization. For a 

classifier, this will typically be the ratio of positive to negative values (high-risk to low-risk, in 

our case).  

2. Based on this prediction, it will calculate the residuals (the difference between the ground truth 

and the predicted value → R1 = Y – Pred1). This is equivalent to minimizing a log-loss func-

tion.  

3. Using the residuals from the previous step as the outcome variable, it will then fit a new classi-

fier tree, using the same features (independent variables). 

4. The prediction is updated as the sum of the original prediction and the new prediction, which 

is adjusted by a hyperparameter called the learning rate (). This controls the weight given to 

each new prediction as is added to generate the overall prediction.  

5. The residuals are then recalculated, based on the updated prediction (R2 = Y – Pred1 – Pred2).  

6. The process is then repeated N times, each time adding the new prediction (adjusted by the 

learning rate) to the previous prediction and then updating the residuals.   

 

Thus, there are three hyperparameters that are usually tuned when using Gradient Boosting Models 

for classification. First, since the weak learners are decision trees, we need to tune one of the hyperpa-

rameters that controls one of the main characteristics of the estimated trees: the maximum tree depth. 

This hyperparameter controls the maximum number of nodes in each tree7 and thus controls the 

complexity of the tree. Second, we also tune the total number of trees that will be trained by the model, 

which determines how many times the predictions are updated and added to the initial prediction (the 

N from step 6 above). Third, we tune the learning rate ( from step 4 above), which is the weight 

given to each new prediction. To tune these three hyperparameters, we did a 10-fold cross-validation 

in a grid search approach, where we evaluated a total of 120 combinations of these 3 hyperparameters.  

 

 

 

 

7 The maximum number of nodes in the tree is equal to 2 to the power of the depth. So, for a tree with a 
maximum depth of 5, the maximum number of terminal (i.e., leaf) nodes is 25 = 32.  
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8.2 Cost-benefit analysis 

Table 15. Main values used in CBA 

  Value Measurement Units 

Carbon content per hectare of forest 108 Metric tons (MT)/ha 

Carbon to CO2 conversion factor 3.67  

CO2 emissions per hectare of forest 396 MT/ha 

Average property size 69 ha 

Avoided deforestation per property 0.09 ha 

Time from tree loss to CO2 emissions 10.2 Years 

Discount rate for future emissions 2% %/year 

Present Avoided CO2 emissions per property 29.5 MT 
   

Average contract size per property (ha) 39 ha 

Payment per ha in PES (USD) $54 USD$ 

Total average payment per contract/year (USD) $2,106 USD$ 

Table 16. Sensitivity analysis of the cost of avoided CO2 emissions 

Parameter 
Alternative     pa-

rameter value 
Cost per ton of CO2 

avoided (USD $) 

Avoided deforestation per enrolled property (ha) 0.09 71 

 
0.12 54 

  0.16 41 

Discount rate 0% 58 

 
3% 79 

  5% 96 

Time from tree loss to CO2 emissions (years) 0 58 

 
5 64 

  15 79 

Carbon content of forest (MT/ha) 96 80 

 
108 71 

  119 65 

 


