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Abstract

We use a differences-in-differences with a matched control group method to estimate
the long-term impacts of genomic selection in the American market for dairy cattle genetics.
Genomic selection is an application of big data that uses the entire genome of an animal to
test for the presence of a set of traits. Unlike pre-existing technologies that require several
years of data from a bull’s daughters, an animal can be tested as soon as it is born, allowing
breeders to identify the “best" animals much faster. Using a data set of all bulls marketed
in the US from 2000 to 2020, we find that genomic selection significantly increased genetic
gains for all measured traits, particularly milk production, protein, and fat yields, but also
increased levels of inbreeding depression, a reduction in the performance of animals whose
parents have a high degree of relatedness, as a consequence of genetics companies breeding
more animals from established lines to respond to an increased “brand" loyalty towards such
lines. Our estimation shows that the increased inbreeding rate of American bulls caused a
loss of between 2.5 to 6 billion dollars to the entire industry from 2011 to 2019. Solving this
externality will require either a mechanism to internalize the harmful effects, such as paying
a much higher price for more inbred sires, or a collective action mechanism to select which
lines will be bred in the next generation.
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1 Introduction

Technological innovations, defined as the set of rules or instructions to combine inputs to

produce outputs (Romer, 1990), play a significant role in economic analysis as a factor that drives

economic growth. This article investigates the externalities of a new technology that boosts

genetic productivity in the dairy industry: genomic selection for bulls. This new technology

increased the productivity of the dairy industry as soon as it was introduced; however, since

dairy genetics has a public good aspect related to the existence of a common pool of genes that

animal breeders draw from, genomic selection has a negative aspect that leads to billions of

dollars of losses to the dairy industry.

Animal breeders and genetics companies can identify which bulls (sires) have the highest

productivity and transmit it to their offspring, thus increasing the productivity of the next

generation of animals. But it also had a negative consequence: increased inbreeding rates

due to breeders mating more closely related animals to undercut each other and ensure a

higher market share. Inbreeding is a negative externality inflicted by breeders on themselves

by pursuing short-term gains in genetic performance at the cost of reducing the diversity of the

gene pool.

However, genomic selection was expected to help breeders “discover" new potentially high-

performing sires independent of their ancestry. Still, something entirely different happened:

genetic companies genotyped almost all of their bulls and released them into the market in 2010,

thus expanding the number of sires more than threefold. Due to a much more extensive choice

set, the relative value of a line (family) of animals increased as it reduces the quality uncertainty

of a new bull whose performance is still unknown. We can think of this as “brand loyalty”

towards famous bull families, and the ultimate consequence of this process is an increasing

inbreeding rate of all bulls from 2010 onwards.

Inbreeding leads to a higher prevalence of deleterious genetic conditions that inflict a very

high cost on the dairy industry. This is not the first time that intense selective breeding has

pushed the dairy industry to a bad outcome, Adams et al. (2016), for example, shows that a

mutation in a single chromosome that could be traced to a very famous sire called “Pawnee Farm

Arlinda Chief” led to more than 500,000 spontaneous abortions and nearly 420 million dollars

in losses because of a deleterious mutation in a gene that was passed to his progeny. Genomic

selection could have helped breeders find more productive genetic resources outside their gene

pool. However, it had the opposite effect since the incentive mechanism that breeders face makes
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them compete to supply the most productive bulls, and the best way to breed high-productivity

bulls is to pull them from existing famous lines.

Is it the case that breeders are mating more heavily on famous lines? If this is the case,

we should see higher inbreeding rates in animals from those well-established families than in

other less famous lines. Genomic selection has the opposite effect; it helps breeders identify

a highly productive bull when the animal is born so it can be marketed as soon as it reaches

sexual maturity (one year old versus four to five years with traditional selection.) Genomic

selection increased the genetic gains per year due to shortened generation intervals but also led

to increased competition in the animal genetics industry; firms that supply bull genetics are

under higher pressure to offer more “efficient" bulls. The most common way to breed a highly

productive sire is through linebreeding, which consists of mating two related animals that are

descendants of a famous sire. A consequence of the pervasive use of line breeding, the effective

population size1 of bulls is at a historic low ranging from 43 to 66 animals. Now all animals are,

on average, more related to each other due to the pervasive use of linebreeding (Cole, 2019).

Inbreeding depression is a negative externality that genetics companies inflict upon each

other because of breeding more closely related bulls. According to the Holstein Association of

the United States, each additional percent point of inbreeding rate leads to a $23 revenue loss

per cow. We estimate that increased inbreeding has led to around one billion dollars of losses

for the industry annually since 2012. The most important policy implication of this article is

that we can use one or several solutions from the economics “toolbox" to fix the issue, such as

Pigovian taxes on breeders who supply highly inbred bulls or governmental regulations to keep

inbreeding levels below a certain threshold.

This article fills a critical gap in the literature; there are no other papers that analyze in-

breeding as a network externality (Liebowitz and Margolis, 1994), (Katz and Shapiro, 1985),

where companies enjoy the benefits (faster genetic gains) and suffer the costs (decreased fertility

caused by the increased frequency of deleterious mutations) from changes in the size of their

associated network. In this case, the pedigree (relatedness) is the force that binds all the nodes

in the network, where two animals are part of the same network (line) if they descend from the

same ancestor. Similarly, all articles that analyze the market for cattle genetics, such as Kerr

(1984), Melton et al. (1994), Richards and Jeffrey (1996) or Schroeder et al. (1992) study cattle as

a closed system and their objective was to determine what are the implicit prices of each genetic

1The number of individuals that an idealized population would need to have for inbreeding rates to be the same
as in the actual population.
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trait using hedonic methods. These early papers then focus on the decisions taken by individual

breeders or dairy farmers without paying attention to their broader impact.

The paper is structured as follows: Section 2 presents the relevant background details

and a detailed causal mechanism to explain why introducing genomic selection led to higher

inbreeding rates in subsequent generations of dairy bulls. Section 3 explains the data sources

and shows how some descriptive statistics can help us delineate the relationship between our

observed variables. Section 4 outlines the identification strategy and methodological framework

used to identify the causal effect of genomic selection on inbreeding rates. Finally, in section

6, we explain the results and discuss their implications for the future of the American dairy

industry.

2 Conceptual Framework

Selective breeding has been practiced since prehistoric times; however, the discovery of

inheritance mechanisms and genetics in the 19th and 20th centuries allowed breeders to identify

the link between desired traits in animals and their inheritance mechanisms (Lush, 1937). From

an economic standpoint, an animal breeder supplies a product (animal genetics) that consists

of an inseparable bundle of traits embodied in a single animal. To produce such an animal,

the breeder combines a set of inputs that can be split into two groups: a series of inputs

exogenously supplied by the producer (labor, feed, capital, veterinary services) and a series of

inputs embodied in the animal (traits.) Those inputs are combined on a production function

subject to the prices of exogenous inputs (observed) and genetic inputs, whose prices are implicit

but can be estimated based on the price paid for a bull’s genetics using the hedonic approach

(Schroeder et al., 1992, Sy et al., 1997).

Melton et al. (1994, 1979) add an additional element: breeders are paid based on the (positive)

deviation of the trait levels of their bulls relative to the population average. Breeders compete

to maximize profits; to do so, they will attempt to release into the market bulls with the highest

possible trait values. Dairy farmers demand genetics to improve their productivity in the next

period by choosing the bulls with the best characteristics. However, the traits that constitute

an animal are marketed as a "bundle" of traits embedded in each animal. Dairy farmers are

only interested in the productivity of their cows because their profits depend on it; they are not

directly interested in how inbred their cows are; therefore, inbreeding rates cannot be priced

directly as an additional cost to dairy farmers.
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Inbreeding is the mating of individuals more closely related to each other than the average

for the population(Bourdon, 2000, p. 337). Inbreeding has two consequences: first, it increases

the likelihood that an animal’s offspring will perform similarly to its ancestors; for example, if a

particularly tall bull is mated with a related cow, its offspring will likely be taller than average

because the genes that carry such trait are likely to be present in both parents. Second, it favors

the expression of deleterious recessive alleles; since an animal has two copies of a recessive gene

from each parent, it is more likely to express any such traits than an outbred animal.

Figure 1: Average Total Performance Index of Holstein bulls
Source: NAAB

Figure 1 shows the close link between the Total Performance Index (TPI), a weighted average

of a series of genetic traits, and the average inbreeding rate. Genomic selection led to an

immediate jump in the productivity index but to a lagged response in inbreeding rates because

of the gestation length and time to reach maturity that originate the cattle cycle (Rosen et al.,

1994), breeding decisions in year t, leading to a birth of a new calf in t + 1, that will be released

into the market in year t + 2.

The increment in the rate of change in hereditary traits caused by genomic selection can be

decomposed into a set of components: heritability, selection intensity, and generation interval

(Kerr, 1984). Equation 1 is called the “breeder’s equation":
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genetic improvement = heritability × selection intensity × trait variance
generation interval (1)

Heritability is a population parameter specific to each trait that measures the strength of

the relationship between the genetic traits of parents and their offspring, and so is the standard

deviation of the observed trait values. Selection intensity is the differential in average trait

values between selected animals and the general population at a given time. Selection intensity

measures how “choosy" breeders are in deciding which individuals are selected; more intensity

of selection means that only the best animals (according to some criterion) are selected to

have offspring. If animals were randomly selected, those magnitudes would not differ. The

generation interval is the time required to replace one generation with the next: the shorter the

interval, the faster the genetic change. Genetic improvement is driven by two forces: selection

intensity and generation interval. An increase in selectivity or a decrease in the generation

interval increases genetic gains per generation.

Before 2009, it took one to five years for a bull to father a large enough number of daughters

to test them for the presence of genetic traits such as milk, protein, or fat yields. With genomic

testing, an animal can be tested as soon as it is born for the presence of specific traits in its

genome. Consequently, the generation interval, the average age of parents when offspring are

born (Wiggans and Carrillo, 2022), has decreased from around five and a half years to less than

two years, close to the biological minimum of one year.
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Figure 2: Average age at first proof for Holstein bulls
Source: NAAB

The most important consequence of a shorter generation interval is an increase in genetic

progress. Figure 2 also shows that the number of daughter-proven bulls has steadily decreased,

and the wider confidence intervals for the average age reflect that. A key element of our analysis

is the existence of what we call “supersires", high-prestige bulls who became the founders of

lines (families). The more genetics companies breed the same lines, the more newborn bulls

will be related to a specific ancestor. We define a bull as a supersire in terms of the size of its

progeny; since we have records of all male descendants from each sire that have been released

on the dairy genetic market, we can then identify which bulls have had the largest progeny;

more precisely, a bull born between 1997 and 2007 is a supersire if the size of his progeny is on

the 95th percentile of the progeny distribution.

We test the hypothesis that genomic selection caused higher inbreeding rates by constructing

a counterfactual line of bulls that possessed similar traits but were less popular at the introduc-

tion of genomics. We identify their descendants and respective inbreeding rates; they increased

disproportionately more for the descendants of supersires. A likely explanation for this process

is that genetics companies did not invest in the most productive bulls but instead in the most

famous lines in an attempt to gain market share. The more companies breed into those lines,
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the higher the inbreeding rate of the next generation of bulls. This leads to a deterioration of

the expected traits of future generations of bulls and, thus, to significant losses for the dairy

industry in terms of reduced productivity.

3 Data Description

Improved genetics via the selection of bulls (sires) and cows (dams) is a crucial driver for

productivity improvements in the dairy industry. Milk production in the United States has

tripled in the last forty years, and over half of this increase is solely due to genetics (https:

//uscdcb.com/impact/). The United States is also the world’s largest exporter of bovine

genetics, with a share of 46.4% of the total value of exports in 2019. Every improvement in

genetics in the United States will be quickly transmitted to the rest of the world dairy industry.

Figure 3: Share of trade Value of Bovine Semen exports by country (2019)
Source: UN Comtrade database

Traditional selection techniques relied on information from pedigrees and observed trait

values to assess an animal’s fitness. Genomic selection uses data from an animal’s genome

to accurately predict breeding values, particularly in cases where traits are expressed only in

females. In such case, it was necessary to measure the traits of a large number of daughters

from the same bull; for that to happen, these cows must have reached the age of sexual maturity
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(one year); hence, the entire process could take three to four years until enough information was

gathered.

Instead, genomic selection uses the bull’s DNA to detect gene combinations significantly

different than the expected frequency if they were associated at random to detect the presence

of certain genetic traits that are highly correlated with specific gene combinations. This process

can be undertaken as soon as the calf is born, so by the time the animal has reached sexual

maturity (one year old), it can be marketed immediately.

Figure 5 shows that genomic selection increased the number of animals released into the

market since there is intense competition for supplying the most productive bulls; the relative

value of a line is now higher than ever. Since dairy farmers have a more extensive choice set of

bulls to buy genetics from, lines act similar to “brands," as they reduce the quality uncertainty

from a product. Finally, this “loyalty" to established lines leads to breeders supplying more

bulls from such families than from lesser-known lines that have similar or better traits.

Brand loyalty arises in this context due to the nature of animal genetics, dairy farmers

demand a particular set of genetic traits related to the productivity and health of their cows, but

they cannot be sold separately; they have to be acquired as a “bundle" at a single price (Ladd

and Martin, 1976, Melton et al., 1994) that is a linear function of the entire set of genetic traits,

which makes a comparison between any two or more animals extremely difficult. This implies

that there are very high search costs to farmers when deciding which animal to buy genetics

from, Stigler (1961) and Farley (1964) argue that it is reasonable for an economic agent to seek

further information on a single purchase as long as the expected reduction in price per unit as

a result of additional search times the quantity purchased is equal to the marginal cost from

searching for lower prices (or higher qualities.)

9



Figure 4: Total number of new bulls released in the market Source: NAAB

Genomic selection increased the number of new bulls released into the market, as shown

in Figure 4. Consequently, search costs for dairy farmers increased as well, thus promoting

greater brand loyalty for "superstar" lines, that is, bulls descended from a notorious ancestor

(e.g., bulls that fathered many daughters). The ultimate consequence of this process is an

increase in inbreeding for the entire population of dairy bulls; the more related bulls are, the

more likely their offspring is to preserve their genetic traits. Higher inbreeding levels lead to a

higher likelihood of observing inbreeding depression, a decrease in the performance of inbred

animals due to lower fertility, higher incidence of rare diseases, and reduced longevity.

The National Dairy Herd Improvement Program (NDHIP) collects, manages, and analyzes

data from American dairy cattle (Hutchins and Hueth, 2023). The information it collects assesses

the industry’s productivity and estimates the paternal contribution to these traits. The raw data

collected from farms is used to estimate a statistical model to predict the genetic contribution

of an animal as a sire (or dam) after controlling for environmental variables such as herd, age,

pedigree, and season effects. The predicted values for each trait from this model are commonly

called the predicted transmitting ability (PTA) of a trait.

Animal breeders and genetics companies compete to offer an animal with the most significant

possible improvement over the cohort’s average. As a consequence, firms will try to produce
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bulls with the highest productivity traits; similarly, this will lead to higher rates of inbreeding

since the best way to ensure high productivity is through linebreeding, that is, by building a

pedigree that has a relatively stable degree of relationship relative to a supersire. We call “large"

companies those with the most significant average number of bulls across the entire 2000-2020

period in the North American genetics market. Similarly, a firm is called “preexisting” if it

participated in the bull genetics markets before 2009; otherwise, they are considered “new."

Figure 5: Number of genotyped bulls by firm size
Source: NAAB

Genomic testing allows genetic companies to detect suitable bulls earlier; thus, they can

release those animals into the market as soon as they reach sexual maturity. Figure 5 shows the

total number of new bulls released in the market by year and type of firm.

In the cattle genetics industry, genomic testing has been adopted remarkably fast. Figure

6 shows how fast genomic testing was adopted in our sample. The high starting costs for

genotyping help explain this since large companies were the ones that could initially afford it.

Still, more companies have genotyped their calves since genomic selection was released. Larger

firms genotyped a more significant percentage of their newborn calves in 2010, and the share

has grown steadily, while smaller firms followed them at a slower rate.
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Figure 6: Share of each status of bull by year

Starting in 2010, large firms started genotyping their bulls, and consequently, the number

of new bulls increased threefold in that year, when all bulls aged 1 to 4 were released simulta-

neously. The staggered adoption of genomic selection has further consolidated the market and

led to more competition for superstar lines. However, the more inbred selected animals are,

by definition, also increases the inbreeding of an average animal in any cohort, thus making

inbreeding depression more likely within a herd. Figure 5 shows the total number of new bulls

released in the market by year and type of firm. We call “large" companies those with the most

significant share of the North American genetics market. Similarly; a firm is called “preexisting"

if it participated in the market of bull genetics before 2009; otherwise, they are considered “new."

4 Empirical Framework

We want to test the hypothesis that the introduction of genomic selection led to higher

inbreeding rates because of increased demand for well-known pedigrees fueled by an increment

in the productivity of dairy cattle. We want to know the causal effects of introducing this

technology; ideally, we need a treatment group that was affected by genomic selection and a

treatment group that was not.
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We must identify families whose founders had similar trait levels as superstars but had less

“momentum"; that is, a smaller progeny. This is a comparable group because breeders could

have invested in them but did not because they were not demanded as highly as superstars. We

can track these lines over time. If their inbreeding rates did not differ substantially from those of

superstars, we could argue that genomic selection allowed breeders to identify new, less-inbred

bulls independent of their ancestry.

Figure 6 shows that the pace of adoption was very high from the beginning; this makes it

unlikely to use non-genomic proven bulls as a counterfactual, mainly because we don’t know

why breeders choose not to genotype certain bulls after 2009. Similarly, we have very few foreign-

born bulls to use as a control group; we also don’t know the selection criteria to import genetics

from those animals. Both alternative control groups suffer from an additional issue: they will

have a very small progeny, thus leaving us with little statistical power to detect any relevant

treatment effect. To overcome these issues, we use propensity score matching (Smith and Todd,

2005) to define a control group that resembles the treatment in all observable characteristics

(except for our outcome: inbreeding rates.)

We define a line as the set of direct (male) descendants from a particular bull, which, in

turn, can be described in terms of his number of male descendants; a bull is a superstar if his

number of sons is in the 95th percentile of the distribution of progeny. Breeders are under high

competitive pressure to supply bulls with the highest PTAs. However, the best way to do so is

by linebreeding a family of bulls so that the relative distance to an ancestor remains constant

across generations. Steyn et al. (2022) and Steyn et al. (2023) show that younger sires capture

a more significant share of present-day population genetic variation; hence, genotypes of older

sires can be discarded from (genomic) evaluations. As generations begin to accumulate, the

contribution of a particular sire decreases (on average) exponentially, so we can disregard the

impact of distant ancestors.

We include in the sample all animals whose sires were born between 1997 and 2005, and

we call those sires the “founders" of each line. Our definition depends critically on when the

founders of such lines were born; if we choose an earlier date, we cannot find a statistically

significant effect due to the high relatedness of all bulls. The reason behind this is that bulls are

advertised only with their sire and grandsire; any ancestry beyond that is not taken into account

by dairy farmers. If we choose a later date, both treatment and control groups will have little

difference in inbreeding rates because there is not enough time for the control group lines to

develop. Figure 9 in the appendix summarizes the sample selection mechanism; the treatment
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and control groups are comprised of the descendants of two groups: supersires (treatment) and

matched sires (control).

After identifying the sires, we can recursively build their pedigrees by matching bulls with

their sires until we find the latest animal in the sample. We want to measure the causal effect of

introducing genomic testing in 2009 on the average inbreeding in extant lines; the first problem

we must tackle is the nature of a valid comparison group. The introduction of genomic testing

caused animal breeders to supply more animals from well-known lines, that is, descended from

superstar sires; our control group must be the lines descended from other non-superstar sires.

First, we need to match the founders of such lines with other sires that did not father as many

sons but had comparable genetic traits. Second, we find all descendants from both groups and

compare the evolution of their inbreeding rates through time. The idea behind this procedure

is that when those bulls were in the market, any reasonably similar sire could have been chosen

but was not, and thus, can be used to construct a counterfactual line.

For every family, we must construct a counterfactual family with new bulls being born every

year, each with an inbreeding rate that we can average across cohorts. Then, the treatment

group are all lines of animals comprised of direct descendants of superstar sires. Similarly, the

control group comprises descendants from comparable animals matched to superstar bulls by

their genetic trait levels.

Our next objective is to identify the counterfactual lines by matching superstar sires with

alternative lines. To do so, we use a propensity score matching estimator, let p(X) = Pr(Ti =

1/X)where T is a dummy equal to 1 if bull i’s progeny is on the 95th percentile of the distribution

and Xi be a vector comprised of the following:

1. Predicted Transmitting Ability for production traits (milk, fat, and protein), health traits

(mastitis, metritis, productive life), and reproductive traits (daughter pregnancy rate,

effective calving, gestation length).

2. Dummies for the absence of certain recessive genes (Holstein Foundation, 2021) such as

brachyspina, cholesterol deficiency, and mule foot.

3. Dummies for the presence of genes (polled, red coat color, complex vertebral malforma-

tion).

4. Dummies for the presence of haplotypes (specific sequences of DNA at different loca-

tions in the chromosome) that affect fertility (Holstein Foundation, 2018) when present in
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homozygous form (likely to be expressed when two carrier animals are mated).

We then estimate the propensity score (Cameron and Trivedi, 2005, p. 873), the probability

of being a superstar given the level of PTAs and the presence of the entire set of variables listed

above. The validity of our method relies on a series of assumptions (Heckman et al., 1997):

Assumption 1 (Stable Unit Treatment Value Assumption): (Ftreatment, Fcontrol) ⊥⊥ T/X.

The average inbreeding rates of any two lines do not vary with the treatment assigned to

other lines. For each unit, there are no different forms of each treatment level (Imbens and Rubin,

2015), conditional on a set of covariates. This assumption implies that conditional on X, the

distribution of inbreeding rates for both groups will be the same for all founders, but it must differ

for their progeny. Figure 10, in the Appendix, shows the extent to which the inbreeding rates

distribution of our matched sample resembles that of the treatment group. Unlike unmatched

sires, their inbreeding distribution has a similar mean and variance conditional on the set of

genetic traits.

Assumption 2: 0 < Pr(Ti = 1/X) < 1 for all X

This assumption implies that we can define a propensity score for every value in the treatment

group. Assumptions 1 and 2 together are the “strong ignorability" assumption in Rosenbaum

and Rubin (1983), and they are necessary in conjunction to identify causal parameters. The

set of matching variables listed above exhausts the entire set of possible selection criteria for

breeders; no unobserved variable can influence mating decisions. Figure 11 shows the degree of

overlapping between superstars and alternative sires; since there is a considerable difference in

the size of the groups, superstars make up only a tiny fraction of bulls; however, the overlapping

is good in the range 0.05 − 0.50, but there exist a few superstars that had little close matches in

the sample.

A central part of our argument is that treatment and control groups should have similar

inbreeding levels before genomic selection. To test that assumption, in Table 1, we calculate the

difference in averages of treatment and control groups for inbreeding rates and a few selected

traits. There is no statistically significant difference for most traits between treatment and control

groups, so our matching method ensures that the difference between both groups is due to the

“prestige” of superstar lines because the bulls in the treatment group had a larger progeny than

those in the control group. Each year these bulls will have a new set of descendants being born,

each with its inbreeding rate and genetic traits; if our hypothesis holds, then the inbreeding

rates of the descendants of supersires should be significantly higher than those of non-superstar
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descendants.

We then estimate the differential impact of genomic selection (our treatment) on the two

types of lines, those from supersires and those from alternative sires. Equation 3 includes leads

and lags of the treatment to check to which degree a pre-treatment balance exists in both groups.

This is not a test for parallel trends on our differences-in-differences specification (Cunningham,

2021), but it helps us ascertain how comparable both groups are. Table 1 shows that there is

no significant pre-treatment difference in both groups and that coefficients from 2010-2011 are

not significant either, which coincides with the values from Figure 1 where there is a significant

increment in inbreeding rates starting in 2012.

We observed the average inbreeding rates of the treatment and matched control groups

before and after introducing genomic selection. If we divide the 2005-2017 period into two

groups, pre-intervention (2005-2009) and post-intervention (2010-2017), denoted as 1 and 2 and

let Ti denote whether a bull belongs to treatment (Ti = 1) or control (Ti = 0), then:

Fit = TiFtreat
it + (1 − Ti)Fcontrol

it

Our causal estimand of interest is the Average Treatment on the Treated (ATT) in the post-

intervention period:

ATTpost = E
[

Ftreat
post − Fcontrol

post

∣∣∣Ti = 1
]

This quantity measures the average causal effect on the treated lines in the post-treatment

period (Roth et al., 2023). To correctly identify causal effects, a series of assumptions must hold

(Sun and Abraham, 2021):

Assumption 3 (Parallel trends): E
[

Fcontrol
post − Fcontrol

pre

∣∣∣Ti = 1
]
= E

[
Fcontrol

post − Fcontrol
pre

∣∣∣Ti = 0
]

We assume that the average inbreeding rates for both groups would have evolved in parallel

without introducing genomic selection. This assumption is not testable because we cannot

observe untreated inbreeding rates after 2009, but it constrains our model specification to a

Two-Way Fixed Effects specification we call Model (1):

Fijt = treati + postt + αj + (treati ∗ Postt)β + Xitγ + εijt (2)

Where Fijt is the inbreeding rate of bull i born from a line that belongs to either the treatment

or control group born in year t, supplied by firm j, βt is a year of birth fixed effect, and αj is a
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firm fixed effect.

Assumption 4 (No anticipatory effects): Fcontrol
pre = Ftreatment

pre

This assumption ensures that both groups were comparable before the treatment; inbreeding

rates of superstar lines did not increase before the introduction of genomic selection; we use

matching methods to ensure that this condition holds. If superstars had superior traits to our

matched control group, then this condition would be violated, and we would not be able to parse

out the causal effect of inbreeding from the effect of bull’s genetic superiority. Assumptions 3

and 4 ensure that the OLS estimates β̂ from Equation 2 are consistent and asymptotically valid

(Roth et al., 2023).

Assumption 5: Let Wi = (Fi,pre, Fi,post, Ti)
′ be a vector of outcomes and treatment status for

unit i. Then, we observe a sample of N independent and identically distributed random draws

Wi ∼ FW(w) for a distribution F satisfying parallel trends.

Under Assumptions 3, 4, and 5:
√

N(β̂ − ATTpost)
D→ N(0, σ2), then we can consistently

estimate the variance σ2 clustering at the line level (Bertrand et al., 2004) asymptotically (N → ∞

and T fixed).

We can also decompose the variations in treatment time since every year, a certain number of

bulls will be born from lines in both groups, each with its inbreeding rate that can be averaged

across treatment and control groups. Equation 3 shows the complete specification with leads

and lags of the treated group. This equation decomposes the estimated ATT relative to the

treatment average by birth year. Sun and Abraham (2021) call this specification “Dynamic

specification", However, there is no staggered treatment since genomic selection affects all lines

in the same year, but inbreeding rates evolve independently after the treatment.

This assumption states that the treatment status of an individual from any given line is not

affected by the treatment status of others. In our setting, the treatment (genomic selection)

affects all individuals, so there is no selection into treatment. To measure the effects of genomic

selection on inbreeding, we estimate the differences-in-differences model:

Fijt = treati ∗
2017

∑
t=2005
t ̸=2009

βtI(yob = t) + αt + αj + Xitγ + εijt (3)

Model (2) is a specification that does not contain any covariates (PTAs), and it decomposes

the ATT on inbreeding rates by year of birth cohort. Model (3) incorporates PTAs (Xit) and

firm-level fixed effects, and Model (4) includes interactions of PTAs and the post-treatment
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dummy. We include the last specifications to account for trait-level trends. We also know that

the treatment affects both inbreeding rates and PTAs, but we do not have a structural model

for their impact (Lewbel, 2019), so we include them in a non-linear fashion as both levels and

interactions to reduce the uncertainty about the functional form of our controls.

5 Results

Figure 7 shows the average inbreeding rates and confidence intervals for both treatment and

control groups across years. Genomic selection did not increase inbreeding rates immediately;

both curves began to diverge substantially after 2011. Inbreeding rates, in turn, started increasing

two years later, and both curves diverged substantially from 2012 onwards.

Figure 7: Average inbreeding rates in treatment and control groups

This plot closely matches the evolution of the population average inbreeding rates plotted in

Figure 1. This behavior is consistent with our hypothesis that breeders prefer well-known over

new lines. Our findings coincide with results reported by Guinan et al. (2023), who also look

at the time trends of productivity and reproduction traits in US dairy cattle. The authors also

document a decrease in the generation interval and an increase in inbreeding rates of Holstein
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and Jersey cattle but do not consider the latter to be an issue because the expected inbreeding

rates of future progeny adjust genetic trait values.

Table 2 shows the results of three models; model (1) is the analog to Figure 7, including only

the interactions between treatment and year of birth. Model (2) splits the treatment effect by

year of birth averages, Model (3) includes the complete set of genetic traits and firm level fixed

effects, and Model (4) is the model with traits and a post-treatment dummy. In all specifications,

standard errors are clustered at the line level to better deal with the inconsistency generated by

the autocorrelation of inbreeding rates between different generations (Bertrand et al., 2004).

Model (1) is the simple differences-in-differences estimation where postt is a dummy equal

to 1 if the bull was born after 2009. The results show that bulls that descend from supersires

increased their inbreeding rates by 1.35 percent points more than those who descend from less

popular bulls, on average. Since the impact of genomic testing on inbreeding rates only became

noticeable after 2011, the coefficient underestimates the ATT of genomic selection. Model

(2) shows that the treatment-year of birth interactions are positive and significant from 2012

onwards, with the 2017 effect being the highest.

Models (3) and (4) in Table 2 show that there is a positive and significant incremental variation

for the treated versus control groups in years 2012-2017; however, the addition of controls in

either levels or interactions attenuates the coefficients for 2014 and 2015 to the point of reducing

the significance of interactions between treatment and year of birth. Still, in all instances, the

coefficients are positive. Regression models show a positive and increasing inbreeding rate in

the treatment group comprised of all descendants from prestige sires relative to the control

group of descendants of comparable non-superstar sires.

The last period in the sample is 2017 instead of 2020 because we cannot make inferences

after 2018 due to a reduction in the number of animals in the control sample; the number of

comparable descendants is too small for us to consider them a valid comparison group. This

drastic reduction is a consequence of lower fertility rates in the control group; since those sires

fathered fewer sons, their sons will father even fewer grandsons, and after a few years, this

group collapses.

Table 2 also includes the results for the F-test for joint significance of all pre-treatment

differences in trends for the interaction of treatment and year of birth. The p-values show

no significance in two of the three specifications and a 5% significance for the pre-treatment

coefficients of model (4). This is not a test for parallel trends since the assumption relies on

unobservable counterfactuals, letting β̂k be the coefficient for any of the post-treatment periods,
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then:

E [βk] = ATTk +
(

E
[

Fcontrol
ik − Fcontrol

i0

∣∣∣Ti = 1
]
− E

[
Fcontrol

ik − Fcontrol
i0

∣∣∣Ti = 0
])

The parallel trends assumption implies that the term in parentheses is equal to zero, then

the coefficients correctly capture the ATT for any post-treatment period k. On the other hand,

its pre-treatment analog is identified as:

E
[

β(−k)

]
= E

[
Fcontrol

i(−k) − Fcontrol
i0

∣∣∣Ti = 1
]
− E

[
Fcontrol

i(−k) − Fcontrol
i0

∣∣∣Ti = 0
]

We have just shown that these coefficients are not significantly different from zero for all

pre-treatment periods, both individually and jointly. It is usually considered evidence in favor

of the parallel trends assumption. However, this is not necessarily the case since this test has

low power against a linear or quadratic pre-trend alternative (Roth, 2022). In our case, we can

dismiss this concern; since our matching method ensures the fulfillment of the condition for the

founders, the entire effect must be due to their sons and grandsons.

Figure 8: Coefficient plots for different specifications of Equation 3

Figure 8 shows the coefficients from the interaction of year fixed effects and treatment status

to assess the impact of inbreeding per year correctly; every year after 2012, the inbreeding rate

of the treatment group is between 1 and 2.8 percent points higher than the control group. The
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coefficient values decrease slightly after controlling for their genetic traits but remain statistically

significant. The figure also shows that all pre-treatment coefficients are not significant; we

interpret this as evidence in favor of the reasonability of the research design. Figure 8 uses the

sup-t uniform confidence intervals for the pre-treatment periods of Montiel-Olea and Plagborg-

Møller (2019) as suggested by Freyaldenhoven et al. (2019) instead of the standard pointwise

confidence. These confidence intervals contain the actual path of the coefficients 95% of the

time and can better help understand which kinds of pre-trends are consistent with the data.

So far, we have discussed our results regarding inbreeding rates only, but we can attach a

monetary value to increased inbreeding rates. The American Holstein Breeders Association

estimates that every additional inbreeding percent over the average is worth 23 US dollars

per animal. The total cost depends on what we consider the average inbreeding; we can use

the control group rates as a counterfactual and calculate the cost from increased inbreeding

of the treatment group, multiplied by the total stock of Holstein cattle; in that instance, we

estimate a total cost from increased inbreeding of 2.55 billion dollars for the period 2011-2019.

Alternatively, by industry standards, the maximum recommended inbreeding rate is 6.25%2,

so we can calculate how much is the cost from inbreeding levels greater than such value, we

estimate the total cost for the same period as 6 billion dollars for the entire dairy industry.

6 Discussion

This article investigates the consequences of genomic selection on the American dairy in-

dustry. On one side, this new technology significantly improved productivity, but on the other

side, it increased the average inbreeding rate of all bulls in the market. Such increment in

productivity was fueled by two effects: a decreased generation interval motivated by a new

technology that accurately estimates a bull’s genetic traits as soon as it is born; and a more

intense competition between animal breeders to produce high-performing bulls. Faster access

to information allowed breeders to select better bulls faster, and consequently, genetic gains per

generation are now much higher than they used to be in the past.

The most popular method to breed highly productive bulls is by breeding lines that descend

from a famous ancestor; we call these animals supersires, and we show that breeding on these

well-known lines is the most critical driver of a greater degree of inbreeding among bulls. As

2https://www.agproud.com/articles/36810-the-impact-of-genomics-on-rapid-increase-of-inbreed
ing-of-holsteins

21

https://www.agproud.com/articles/36810-the-impact-of-genomics-on-rapid-increase-of-inbreeding-of-holsteins
https://www.agproud.com/articles/36810-the-impact-of-genomics-on-rapid-increase-of-inbreeding-of-holsteins


the average inbreeding rate increases, every new generation of animals experiences an increased

risk of experiencing inbreeding depression, which in turn leads to lower fertility and a higher

prevalence of genetic diseases. Inbreeding depression is a cost that breeders impose on others,

a negative externality that is a function of the number of breeders that release closely related

bulls into the market. Since pedigrees transmit the externality, it is a network externality that

affects all breeders and dairy farmers.

It is impossible to directly test the impact of genomic selection on inbreeding rates because

there is no natural control group and no lines that have been unaffected by genomic selection.

We used a propensity score matching method to find equivalent families based on the founder’s

genetic traits but had less progeny; breeders could have invested in them but did not. We then

track those families across years and observe the average inbreeding rates of their progeny. We

show that bulls from the treatment group (those who descend from famous ancestors) have

consistently higher inbreeding rates than those from less-known ancestors from 2012 to 2017.

Our analysis shows that the cost of this increased inbreeding amounts to around 500 million

dollars.

Inbreeding rates can be reduced significantly by importing bulls from other countries that

are not (or less) related to supersires. Another possible solution is to adjust the values of genetic

traits by inbreeding; the Holstein Association of the United States adjusts the values of PTAs

according to inbreeding levels to penalize breeders that select bulls with high inbreeding rates

to account for the higher reproduction costs of such animals. The value of this penalty is a

crucial element in reducing inbreeding by incentivizing dairy farmers and animal breeders to

breed lines that are less related on average by, for example, importing bulls from abroad or by

crossbreeding Holsteins with other high-yield milk breeds.
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7 Appendix
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Control sires

Treatment sires

Matched control sires

95th percentile

Treatment GroupControl Group

Frequency

Born between 1997 and 2005

Born between 2006 and 2017

Matched on genetic traits

Figure 9: Sample selection mechanism
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Figure 10: Distribution of Inbreeding rates across pre-treatment groups

Figure 11: Propensity score by class of bull
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Table 1: Balance table for outcome and matched variables

Variable Control mean (n = 224) Treatment mean (n = 43) t.statistic p.value df
Inbreeding rate 2.968 2.904 0.426 0.672 58.147
Milk 0.059 0.059 -0.036 0.971 59.956
Fat -0.122 -0.170 0.346 0.730 76.548
Protein -0.851 -1.009 0.416 0.679 61.059
Somatic cell score -0.151 -0.037 -0.675 0.502 66.764
Productive life -0.619 -0.677 0.173 0.864 59.829
Daughter preg. rate -1.224 -0.489 -1.336 0.186 70.101
Heifer conc. rate -11.953 -5.553 -1.807 0.075∗ 71.841
Cow conc. rate -0.420 -0.209 -1.278 0.206 65.480
Livability -0.393 -0.177 -1.816 0.074∗ 70.905
Type -0.827 -0.551 -1.721 0.090∗ 69.510
Gest. length 0.342 -0.055 1.719 0.090∗ 64.087
Heifer liv. -0.569 -0.579 0.032 0.975 58.933
Eff. calving 0.101 0.232 -1.549 0.127 58.339
Mastitis -0.888 -0.764 -0.288 0.774 58.621
Metritis -0.840 -0.891 0.202 0.840 62.094
Strength -0.589 -0.581 -0.047 0.963 57.734
Rear legs rear view -191.265 -24.936 -1.581 0.119 67.713
Rear legs side view -0.027 -0.013 -0.495 0.623 60.964
Foot leg score -1.348 -1.123 -0.666 0.508 59.099
Teat rear place -8.284 -3.255 -1.859 0.067 68.421
Rump angle -0.360 -0.136 -1.447 0.153 64.334
Thurl width -0.010 0.050 -0.342 0.734 63.537
Foot angle -0.767 -0.417 -2.044 0.045∗∗ 68.106
Fore udder -0.743 -0.432 -1.735 0.087∗ 66.269
Rear udder height 0.142 0.193 -0.254 0.800 60.330
Rear udder width 3.044 2.995 0.690 0.493 52.692
Udder cleft -0.386 -0.349 -0.235 0.815 77.188
Udder depth -0.206 -0.267 0.409 0.684 67.108
Teat fron place -0.343 -0.195 -1.006 0.318 66.497
Teat length 0.197 0.159 0.195 0.846 59.002
Milk fever -0.312 -0.140 -0.948 0.347 62.811
Stature -0.255 -0.233 -0.138 0.890 72.664
Dairy form -0.573 -0.403 -1.442 0.153 73.087
Body depth -0.401 -0.193 -1.127 0.264 61.777
Sire calv. ease -0.738 -0.589 -0.989 0.326 73.000
Daughter calv. ease 2.427 2.287 1.188 0.239 63.963
Notes: ∗∗∗Significant at the 1 percent level.

∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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Table 2: Difference-in-Differences estimates from Equation 3

Inbreeding rate (%)

No covariates No covariates Traits Traits and interactions

(1) (2) (3) (4)

treat 0.152 (0.129) 0.084 (0.230) 0.018 (0.218) 0.090 (0.177)

treat × post_2009 1.346∗∗∗ (0.366)

treat × I(yob = 2005) 0.129 (0.298) 0.095 (0.295) 0.048 (0.277)

treat × I(yob = 2006) −0.262 (0.313) −0.158 (0.292) −0.306 (0.254)

treat × I(yob = 2007) 0.312 (0.306) 0.350 (0.268) 0.358 (0.259)

treat × I(yob = 2008) 0.375 (0.324) 0.311 (0.285) 0.313 (0.251)

treat × I(yob = 2010) −0.467 (0.290) −0.472∗ (0.285) −0.567∗∗ (0.270)

treat × I(yob = 2011) −0.057 (0.363) −0.090 (0.262) −0.220 (0.260)

treat × I(yob = 2012) 1.239∗∗ (0.492) 1.255∗∗ (0.564) 1.139∗ (0.601)

treat × I(yob = 2013) 1.453∗∗∗ (0.425) 1.107∗∗ (0.477) 1.010∗∗ (0.491)

treat × I(yob = 2014) 1.990∗∗∗ (0.304) 1.851∗∗∗ (0.298) 1.739∗∗∗ (0.267)

treat × I(yob = 2015) 1.660∗∗∗ (0.339) 1.383∗∗∗ (0.407) 1.259∗∗∗ (0.424)

treat × I(yob = 2016) 2.410∗∗∗ (0.246) 1.745∗∗∗ (0.272) 1.677∗∗∗ (0.252)

treat × I(yob = 2017) 2.840∗∗∗ (0.448) 2.784∗∗∗ (0.454) 2.735∗∗∗ (0.454)

p-value for nonzero pre-effect 0.289 0.3 0.041∗∗

Observations 14,480 14,480 14,480 14,480

R2 0.160 0.440 0.468 0.474

Adjusted R2 0.160 0.439 0.465 0.470

Residual Std. Error 2.265 (df = 14476) 1.851 (df = 14454) 1.807 (df = 14415) 1.798 (df = 14393)

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.
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